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Valley-Hall kink and edge states in multilayer graphene
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We report on a theoretical study of one-dimensional (1D) states localized at few-layer graphene system ribbon
edges and at interfaces between few-layer graphene systems with different valley-Hall conductivities. These 1D
states are topologically protected when valley mixing is neglected. We address the influence on their properties
of stacking arrangement, interface structure, and external electric field perpendicular to the layers. We find
that 1D states are generally absent at multilayer ribbon armchair direction edges, but present irrespective of
crystallographic orientation at any internal valley-Hall interface of an ABC-stacked multilayer.
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I. INTRODUCTION

Metallic surface states in a system with an insulating bulk
are often related to topological order.1 An important example is
provided by the quantum Hall effect of two-dimensional (2D)
systems in the presence of an external magnetic field, in which
two-dimensional (1D) edge states2 accompany integer-valued
Chern indices3 of bulk 2D bands. The recent identification of
topological-insulator materials4 has provided a new example,
one which does not rely on external magnetic fields. In
topological insulators, strong spin-orbit interactions yield
bulk bands that have nontrivial values of a Z2 topological
index and support topologically protected surface states. The
present study explores a 2D bulk example in which the
relevant topological index is, as in the quantum Hall case,
an integer-valued Chern index even though no magnetic field
is present.

Our work is motivated by the suggestion of Martin, Blanter,
and Morpurgo5 that 1D states can be induced in bilayer
graphene by changing the sign of an interlayer electric field.
(Below, electric field will always refer to a field directed
between the layers of a few-layer graphene system.) These
states have a formal structure similar to that of the zero
modes that appear in the A phase of 3He thin films at
domain walls between regions with opposite spontaneous
orbital moments.6 They have been studied as a special kind
of tunable Luttinger liquids7 and are expected to influence 2D
transport in the presence of periodic potential modulations in
superlattices.8 The 1D states in Ref. 5 can be understood as
being a consequence of separate Chern indices of opposite
sign associated with the K and K ′ Dirac points of bilayer
graphene. The property that these Chern numbers are implied
by the momentum-space Berry curvature of bilayer-graphene
bands9 when the electric field is nonzero is referred to as
the valley-Hall effect. The valley Chern numbers emerge
when the electric field breaks inversion symmetry to open
a gap in the 2D bulk bilayer electronic structure. However,
because the two valleys share the Brillouin zone of a
bilayer graphene crystal, separate Chern numbers are never
precisely defined and are, strictly speaking, an artifact of
the commonly employed continuum �k · �p electronic structure
model. Correspondingly, the 1D states that are the subject
of Ref. 5 are not guaranteed to be present at all energies
and are not topologically protected against perturbations that
couple different valleys. The goal of the present study is

to assess the degree to which these caveats are practically
important.

1D states of the type we consider were first found in
numerical studies of zigzag bilayer ribbons,10 and later rec-
ognized as valley-Hall edge states by Morpurgo et al.13 They
have also been previously studied theoretically in single-layer
graphene samples with an imposed staggered potential,14,15

i.e., a potential that has opposite signs on the graphene
honeycomb A and B sublattices. A more detailed analysis of
the correspondence between bulk and edge in bilayer graphene
has been carried out recently, concluding that the existence
of 1D states at an edge depends on its morphology.16 In the
present paper, we consider both bilayer graphene and other
few-layer graphene systems in which electric fields open up
an energy gap and yield a valley-Hall effect. Continuum model
considerations suggest that 1D states should be present at the
edge of graphene ribbons with a valley-Hall effect and at
interfaces between systems with different valley-Hall-effect
quantum numbers. We will refer to the former type of 1D
state as an edge state and to the latter as a kink state. In
the case of bilayer graphene, for example, an interface that
supports kink states is easily produced by changing the sign of
the electric field along a line inside the material. To create
the corresponding 1D kink states in monolayer graphene,
it would be necessary to change the sign of the staggered
potential.

In this paper, we use π -band tight-binding models to assess
the influence of stacking orders and edge geometries on edge-
and kink-state properties. As in the bilayer case, we find
that the valley-Hall edge states in multilayers do not survive
for armchair edge terminations. However, kink states are
clearly present for both zigzag and armchair crystallographic
orientations of an internal interface along which the valley-Hall
quantum number changes. Section II contains the main results
of our work. We start discussing the valley-Hall conductivity
in terms of the low-energy continuum model of ABC-stacked
N -layer graphene. We conclude that we can normally expect
N 1D kink-state branches per valley localized along electric
field sign-change lines. Then we use π -orbital tight-binding
calculations on multilayer ribbons to test the continuum model,
presenting results for the energy bands of valley-Hall edge
and kink states for a number of different cases. Finally, in
Sec. III, we close with a brief summary and a discussion of our
findings.
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II. VALLEY-HALL EDGE AND KINK STATES IN
MULTILAYER GRAPHENE

The electronic-structure results for the multilayer-graphene
ribbons presented here were obtained using a π -orbital tight-
binding model Hamiltonian with nearest-neighbor hopping
and a lattice-position-dependent external potential Ui :

H = −
∑
〈i,j〉

γi,j c
†
i cj +

∑
i

Ui c
†
i ci . (1)

The hopping amplitude γi,j we used is equal to t = 2.6 eV for
in-plane hopping and t⊥ = 0.34 eV for out-of-plane hopping.
Operators c

†
i and cj are creation and destruction operators

at ith and j th lattice sites. This model can yield 1D edge
state or kink-state branches at energies inside bulk gaps,
which can be explained qualitatively in terms of the model’s
bulk valley-Hall effect. This quantum valley-Hall effect and
its edge states are robust to long-range disorder potentials,
magnetic or not, as long as the system is free of valley
scattering perturbations.17 We start by discussing the valley-
Hall properties of multilayer systems using a low-energy
model Hamiltonian before returning to tight-binding model
calculations carried out for ABA- and ABC-stacked bilayer,
trilayer, and tetralayer graphene ribbons. We consider a variety
of different examples that capture some essential features of
stacked multilayer electronic structure.

A. Valley-Hall effect and associated 1D states in chirally
stacked N-layer systems

The low-energy Hamiltonian in ABC-stacked (rhombo-
hedral) N -layer graphene is useful as a simplified route
for gaining insight of the system despite the simplifying
assumptions. In particular, the valley-Hall properties of ABC-
stacked (rhombohedral) N -layer graphene can be derived from
a low-energy band structure in which Bloch states are localized
mainly on top and bottom layers. Because the phase difference
between top- and bottom-layer wave-function components
varies more rapidly with momentum direction (measured from
the K and K ′ Dirac points) in larger N systems, the valley
Chern numbers increase with N .18,20 To be more precise,
the wave functions of the states closest to the Fermi level
reside mostly on the top- and bottom-layer lattice sites without
a vertical neighbor, and the valley Chern number in the
presence of an electric field is equal to N/2 except, possibly,
at very low carrier densities and weak electric fields where
weak band-structure features can play a role. (Note that for
odd N , this quantity is not an integer; we nevertheless refer
to the values as Chern indices for convenience.) The sites
with vertical neighbors have more weight in higher energy
bands.

Strictly speaking, Chern numbers should be calculated by
integrating Berry curvatures over the whole Brillouin zone,
including contributions from near both K and K ′ points. This
total Chern number always vanishes, as it must, when time-
reversal symmetry is not violated. In the continuum model
approximation, however, we can speak of valley-resolved
contributions to Chern numbers because the valley indices are
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FIG. 1. (Color online) Schematic illustration of the relationship
between valley-Hall effects and 1D conduction channels at interfaces
expected on the basis of continuum model considerations. The
number of 1D modes per valley is an integer n evaluated from
differences between valley Chern numbers n = |Ñ l

3 − Ñ r
3 |. When

the layer number N is odd, the integral of the Berry curvatures is
half-odd integer, a property that is related to the half-quantized Hall
effect of Dirac systems. We find that the number of 1D channels is then
usually reduced to the integer part of the integrated Berry-curvature
difference. The sense of the arrows directed perpendicular to the page
indicates the sign of the Chern number associated with each valley.
Upper panel: illustration of ABC trilayer graphene with opposite
electric-field signs in the left and right regions with three 1D modes
per valley. Lower panel: junction formed between pentalayer and
trilayer regions under a uniform bias potential. In this case, the
valley-Hall conductivities have the same sign but different magnitude
on the opposite sides of the interface and the number of 1D channels
is expected to be proportional to the difference of the individual
Berry-curvature integrals. The continuum model picture illustrated
here can be invalidated by atomic-scale physics at the interface,
particularly when the number of layers on opposite sides of the
interface is different.

clearly distinguished. In this picture, familiar quantum Hall
considerations suggest the presence of 1D channels at edges
and along lines where the valley-Hall conductivity changes.
The microscopic tight-binding model calculations we perform
are intended to test the degree to which these considerations
are reliable.
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Our working assumption in this section is that the following
effective continuum model18,21 captures essential properties of
the full Hamiltonian:

HN = −t⊥

(
0 ν†N

νN 0

)
+ 1

2

(
� 0

0 −�

)
, (2)

where −t⊥ is the interlayer hopping parameter, ν = υF π/t⊥,
υF ∼ c/300 is the Fermi velocity of single-layer graphene,
π = h̄(τzkx + iky), where τz = ±1 labels the K and K ′
valleys, (kx,ky) is crystal momentum measured from a Dirac
point, and � is the potential difference between layers
produced by the electric field. This Hamiltonian leads to
momentum-space Berry curvatures that are sharply peaked
near (kx,ky) = 0. The valley Chern numbers are obtained5,6,9,21

by integrating the Berry curvature over 2D momenta (kx,ky)
continued to ∞ to obtain Cτz

= Nτzsgn(�)/2. The valley
Chern numbers are sometimes referred to as topological
charges and they are denoted by Ñ3 as a reminder that the
topology indices of gapped 2D systems may be thought of as a
dimensional reduction of topological charge N3 at gapless 3D
Fermi points.6 The contribution to the Hall conductivity from
a particular valley is σ

τz
xy = Ñ3e

2/h. In a continuum model, the
number of 1D channels per valley at an interface between two
bulk regions with different valley-Hall conductivities, σ

τz
xy =

Ñ3 e2/h, is equal to the difference between their valley Chern
numbers.5,6,15 For ballistic transport, each channel contributes
e2/h to the two-probe conductance. When the sign of the
electric field is reversed at an interface, the Chern-number
difference is 2 × (N/2) = N , which is equal to the layer
number as illustrated schematically in Fig. 1.

The generalization of the notion of a valley-Hall conduc-
tivity from one- and two-layer systems to general N -layer
systems can also be made using the explicit equations for the
1D interface states by following a procedure similar to that
outlined in Ref. 5:

−V (x)u + KN (∂x + ky)Nυ = εu,
(3)

KN (∂x − ky)Nu + V (x)υ = ευ.

Here, KN = −t⊥(−i υFh̄/t⊥)N , N is the number of layers
in the system, and V (x) is a general position-dependent
function, which specifies the difference between top- and
bottom-layer potentials. In the following sections, we will
present tight-binding calculations for multilayers for a variety
of different external potential profiles and discuss the validity
of the qualitative picture summarized in Fig. 1.

B. Multilayer ribbons under a uniform electric field

The simplest example of valley-Hall edge states are those
that appear in ABC-stacked multilayers under a uniform
external electric field. The tight-binding band structure of
bilayer-graphene ribbons by Castro et al.10,21 has demonstrated
the presence of metallic edge states, which cross the Fermi
level in neutral zigzag-terminated bilayer ribbons and in
chirally stacked multilayer zigzag ribbons. The edge-state
properties of multilayer graphene11 and band gaps in the
presence of an electric field depend on the layer stacking.12 The
number of valley-Hall edge-state branches in each propagation
direction is equal to (N/2)21. Changing either edge termination
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FIG. 2. (Color online) Band structures of ABC- and ABA-
stacked, zigzag- and armchair-terminated trilayer and tetralayer
ribbons in the presence of a uniform electric field. (a) ABC-stacked
layers with zigzag edges, (b) ABA-stacked layers with zigzag edges,
(c) ABC-stacked layers with armchair edges, and (d) ABA-stacked
layers with armchair edges. In each figure, the left and right panels
represent trilayer and tetralayer ribbons, respectively. For ABC
stacking the electric field opens a bulk band gap containing edge
states in the zigzag case but not in the armchair case. The number of
edge-state branches is independent of the ribbon width, whereas the
number of bulk-state branches is proportional to ribbon width. In the
case of ABA stacking, ribbons are metallic in the trilayer, whereas a
small gap opens in the tetralayer geometry.

or stacking sequence introduces qualitative changes in the
ribbon band structure as we now describe.

In Fig. 2, we plot band structures for ABC- and
ABA-stacked, zigzag- and armchair-terminated trilayer and
tetralayer ribbons. In all these calculations, we have main-
tained the same interlayer potential difference �/t = 0.1
between top and bottom layers and have taken the electric field
to be uniform. In the tetralayer case, we used a smaller potential
difference �′ = �/3 to account for the smaller interlayer
distance of the inner layers, which facilitates distinguishing
their edge-state bands associated with respect to the outer
ones. In multilayer zigzag ribbons with ABC stacking, the
uniform electric field generates a band gap in the sample
bulk20 with edge states in the gaps. In agreement with previous
analysis,21 we find (N/2) valley-Hall edge states in an N -layer
ribbon in each valley that propagate in opposite directions
and are localized at opposite edges. Hence, for zigzag edges
the number of 1D states at the physical boundaries of the
ribbons with vacuum can also be discussed in terms of valley
Chern number differences between the bulk region and the
vacuum Ñvac

3 = 0. In the armchair termination, both K and K ′
valleys appear at the same projected 1D momentum and the
Hall edge states are annihilated. This observation is helpful
in distinguishing edge and kink states in ribbons with internal
electric-field sign changes.

075418-3



JUNG, ZHANG, QIAO, AND MACDONALD PHYSICAL REVIEW B 84, 075418 (2011)

For biased ABA multilayer zigzag ribbons, the system also
has conducting edge states, but their pattern is more complex
than in the ABC case. (Bulk and edge ribbon bands can
in general be distinguished by their dependence on ribbon
width.19) In ABA-stacked trilayer ribbons, an external bias
increases the number of bulk channels while it opens a bulk
gap in the ABC case.20,22,23

C. ABC-stacked zigzag and armchair multilayer
ribbons with kink states

We have just seen that a biased bilayer and ABC trilayer
graphene ribbons are gapped in the bulk but have metallic
valley-Hall edge states crossing the Fermi level when they
have a zigzag edge termination. Now we consider ribbons
with an electric-field sign change at the ribbon center that
is expected to produce N 1D channels in each valley. In
these ribbons, the regions near the ribbon border will show
valley-Hall edge states similar to those present in a bilayer with
a uniform electric field. In Fig. 3, we plot the band structures
of bilayer, trilayer, and tetralayer ribbons with zigzag edge ter-
minations subject to a step-like interlayer potential discussed
earlier.

In zigzag-terminated ribbon geometries, the K and K ′ mo-
mentum projections appear at the two valley points located at
k = 2π/3a,4π/3a and can therefore easily be distinguished.24

In agreement with the continuum-model analysis presented in
Sec. II, we see N bands of confined kink states with a well-
defined propagation direction for each valley K or K ′ crossing
the Fermi level. Each valley has doubly degenerate additional
metallic edge-state branches, with a velocity opposite to that of
the confined states. In the uniformly biased case, edge states
in a given valley that are localized on opposite edges have
opposite propagation directions, whereas they propagate in
the same direction when a kink is present. For ribbons with
inversion symmetry, at the ribbon center, the copropagating
edge-state channels are degenerate.

As mentioned previously, the projection of the 2D bands of
graphene to obtain the ribbon band structure places K and K ′
valleys at the same momentum in the armchair edge case.
Therefore, unlike the case of the zigzag ribbons, it is not
possible to identify valley labels from ribbon band-structure
plots. In the case of edge states, these difference eliminates the
1D channels completely. As we see in Fig. 3, this is not the
case for ribbon states, which appear to be as robust in armchair
and zigzag directions. When the electric field profile has sharp
spatial variation, there is a barely visible gap opening, similar
to the one found in a direction of graphene under a staggering
potential.14 This gap size decreases quickly when the potential
variation at the domain becomes smoother.

In the band structures of bilayer, trilayer, and tetralayer
graphene armchair ribbons subject to a kink-step bias around
the ribbon center, one can clearly identify two, three, and four
1D states for each propagation direction, corresponding to
confined states at the domain wall for wave vectors around
k ∼ 0 where both right- and left-going states coexist with
similar Bloch function wave vectors. In armchair edges, we
do not find edge-localized states crossing the Fermi level as
we had found for the zigzag-terminated systems.

FIG. 3. (Color online) Upper Panel: band structure of bilayer,
trilayer, and tetralayer graphene zigzag ribbons with an electric-field
sign change at the ribbon center. We can clearly observe two, three,
and four 1D valley-Hall kink states with a common sign of velocity
located around the valley point. The branches, which correspond to
wave functions localized at the ribbon center, are plotted in red. The
other branches that cross the bulk gap are doubly-degenerate edge
states. Lower Panel: band structure of bilayer, trilayer, and tetralayer
graphene armchair ribbons with an electric-field sign change at the
ribbon center. As in the zigzag case, we can clearly identify two,
three, and four three 1D kink-state branches. In armchair edges, we
do not find 1D edge-state channels.

III. SUMMARY AND CONCLUSIONS

External electric fields between layers give rise to gaps
at the carrier neutrality point in bilayer and ABC multilayer
graphene systems leading to quantum valley-Hall effect with
(N/2) chiral edge states in zigzag edge terminations. We
have shown that in addition, 1D transport channels appear
along lines where the sign of the inversion-symmetry-breaking
potential changes. This finding generalizes results obtained
previously for the bilayer5 and monolayer cases.14,15 The
number of these metallic 1D kink state branches is proportional
to the number of layers N and can be related to the bulk
valley-Hall conductivity.21 The states we have considered arise
at the boundary between two regions with opposite valley-
Hall conductivity. Because the Hall conductivity changes
sign in opposite directions in the two valleys, both valleys
produce 1D kink states and they propagate in opposite
directions.

Similar valley-Hall effect considerations suggest that kink
states should occur at boundaries between ribbons with
different thicknesses. Our π -orbital tight-binding model cal-
culations for ribbons with a trilayer/tetralayer boundary find
that the interface electronic structure depends on whether the
stacking sequence is ABC or ABA. Bulk valley-Hall effect
values are also unreliable at the edge; in particular, we find
that edge states are absent in multilayer armchair-terminated
ribbons, as found earlier in the bilayer or monolayer case. This
finding is perhaps expected since the 1D momentum projection
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does not distinguish valleys in this case. It is the robustness
of the kink states at internal electric-field sign changes that
is perhaps the surprise. It is important to determine if it
persists in the presence of disorder and turns in the propagation
path.25
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13J. Li, I. Martin, M. Büttiker, and A. F. Morpurgo, Nat. Phy. 7, 38
(2011).

14G. W. Semenoff, V. Semenoff, and F. Zhou, Phys. Rev. Lett. 101,
087204 (2008).

15W. Yao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 102, 096801
(2009).
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